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Abstract – In this study, we decomposed 12 fMRI data

sets from six subjects each 101 times using the infomax

algorithm. The first decomposition was taken as a

reference decomposition; the others were used to form a

component matrix of 100 by 100 components.

Equivalence relations between components in this

matrix, defined as maximum spatial correlations to the

components of the reference decomposition, were found

by the Hungarian sorting method and used to form 100

equivalence classes for each data set. We then tested the

reproducibility of the matched components in the

equivalence classes using uncertainty measures based on

component distributions, time courses, and ROC curves.

Infomax ICA rarely failed to derive nearly the same

components in different decompositions. Very few

components per data set were poorly reproduced, even

using vector angle uncertainty measures stricter than

correlation and detection theory measures.

I.  INTRODUCTION

Independent component analysis (ICA) has been successfully

applied in a variety of applications including biomedical time series

(EEG/MEG, ECG, etc.) and images (fMRI, PET, and SPECT) [1].

For example, Makeig et al. [2] applied ICA to separate the multi-

channel EEG and found that the basis of the event-related potential,

averaged across similar experimental trials, can typically be

dissected into several source components accounting for temporally

and functionally distinct EEG processes. This method can better

explain the variability of event-related EEG results and can give

more complete and consistent results, within and between subjects,

than standard methods that extract data features at individual scalp

channels [3].

ICA is a relatively model-free blind source separation method

that attempts to separate the underlying source contributions to the

data without knowing in advance what the sources are or how they

are mixed. Thus, there are no a priori suitable statistical models to

evaluate the goodness-of-fit of the resultant independent

components. For both EEG and fMRI data, the ‘true’ nature of the

signal sources is not known, making it difficult to evaluate the

performance of ICA precisely.

To study the stability of ICA decomposition of fMRI data,

McKeown et al. [4][5] decomposed one fMRI data set twice, first

with random initial weights and then again starting with the weights

learned in the first decomposition. They then compared the

components from the two decompositions using mutual information,

selecting a mutual information threshold for detecting highly

reproducible components, and suggested that these components

might be of interest for further analysis. In a subsequent study,

Duann et al. [6] found that infomax ICA could consistently derive

very similar components by matching independent components

obtained in 10 different decompositions using a Hungarian sorting

algorithm that maximizes the sum of the positive correlation

coefficients of the matched components. In contrast to McKeown’s

findings, matching components by mutual information did not give

reasonable pair assignments. The rapid drop off in pairwise mutual

information they reported was mainly due to poor identification of

corresponding components from the different decompositions. On

the other hand, Meinecke et al. [7][8] applied a resampling

approach, first randomly selecting independent components from an

ICA decomposition to create surrogate data, and then applying ICA

to the surrogate data. This process was repeated several times to test

whether a given component was found consistently.

In this study, we used infomax ICA to decompose 12 fMRI data

sets collected from six subjects participating in a passive visual

perception experiment involving infrequent 8-Hz flickering

checkerboard pattern stimuli, then employed quantitative

approaches to assess the reproducibility of the ICA decompositions.

In the following sections, we first describe the fMRI data, how we

performed the decompositions, and how we matched the

components across different decompositions. We then define several

similarity measures including ROC curve and uncertainty measures

applied to both time courses and ROA maps of components obtained

from repeated decompositions. We then present the resulting

component equivalence sets. Finally, we discuss the implication of

our results for fMRI data analysis.

II. MATERIAL AND METHODS

A. FMRI Data Sets

Twelve fMRI data sets, two sets each from six subjects were

used for multiple ICA decompositions. The subjects passively

viewed reversing checkerboard patterns presented for either 500 ms

or 3000 ms every 30 s (see Duann et al. [9]). The BOLD data

consisted of five 64 x 64 T2*-weighted brain slice images covering

mainly the primary visual cortex (parallel to the calcarine sulcus)

collected with an inter-scan interval (TR) of 0.5 s on a 3-T MR

research scanner at the Taipei Veterans General Hospital, Taiwan.

The study was approved by the local ethics committee of the

hospital and all subjects provided written consent.

B. Infomax ICA

As noted by both McKeown et al. [10] and Duann et al. [9], the

objective of applying ICA to fMRI data is to separate fMRI signals

into spatially independent processes with distinct (though not

necessarily independent) time courses each accounting for

fluctuations in blood oxygenation during image acquisition

produced by a single hypothesized source or process. ICA does not

attempt to model the natures of the contributing sources before

performing the separation – for this reason it is defined to be a
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‘blind source separation’ method.

ICA derives an unmixing matrix, W, iteratively, here using the

infomax ICA algorithm [11] in its natural gradient formulation [12]

and optionally using the extended option of [13] that can also

identify sub-Gaussian (e.g., spatially extensive) source distributions

The estimated source activations, U, can then be calculated as

U =W X
where X is the T N matrix of observed time series data, T is the

total number of time points, and N is the number of voxels

submitted to ICA decomposition. U, the estimated source activation

matrix, has the same dimension as input data matrix, X. W is a T T

ICA unmixing matrix that recovers the source activities from the

original recordings. Its inverse, W-1 (the mixing matrix), gives the

relative weight of the sources at each time point, thus specifying

how the source activities contribute to the recorded data. When

necessary to avoid numerical instability, principal component

analysis (PCA) may be used prior to ICA decomposition to reduce

the dimensionality (T) of the input time series.

PCA dimension reduction allows ‘non-square’ unmixing, in

which fewer independent components than the number of time

points in the input training data are extracted. PCA is of use when

the number of acquired time points is large and the number of image

slices (and voxels) is relatively small. In such cases, ICA

decomposition performed without dimensionality reduction might

not converge, since ICA needs a sufficient number of voxels

(typically » T T) to learn the T T weights of the unmixing matrix

from the input data.

C. Image Analysis

Before image preprocessing, the first 10 (‘dummy’) scans of

each fMRI data were first removed from the data. The data were

then subjected to a slice-timing adjustment to minimize

inhomogeneities arising from acquisition of the five image planes at

slightly different time. We then removed voxels outside the brain

volume to reduce the data size for ICA training and also to eliminate

machine noise arising from susceptibility differences between air

and brain tissues. The data were then transposed to form a matrix

with dimension T x V, where T is the number of scans (T=600 in

this study) and V, the number of remaining voxels after

preprocessing (V ~ 4000). The transposed matrix was then subjected

to infomax ICA decomposition [14], producing an unmixing matrix

that linearly separates the input fMRI time series into maximally

spatially independent components (or source processes).

Multiplying the data by this matrix produced the estimated

component maps; inverting the unmixing matrix gave the

component time courses. Since the number of voxels was not

sufficient to derive a full (600 x 600) unmixing matrix, the

dimensionality of the data was reduced to 100 by PCA prior to ICA

training. The surrogate data were made by back-projecting the first

100 principal components to the original data space instead of using

the principal components themselves. A unity matrix was used to

initialize the weights of the unmixing matrix. The number of

training steps was increased to 3000 to assure the full convergence

of ICA training. For further detail, see Duann et al. [9].

D. Multiple ICA Decompositions

To evaluate the stability and consistency of ICA decomposition,

each of the preprocessed fMRI data sets was decomposed by

infomax ICA 101 times using the same initial conditions and

training parameters. Variability in the output of the infomax

algorithm [14] is induced by the random shuffling of the training

data (i.e. voxel) order before each training step. Next, the activation

matrices containing the component spatial maps were obtained by

ui =Wi x                            (1)

where u
i are the ‘activation’ map weights of the ith decomposition,

Wi is the inverse matrix of the ith decomposition of the training data

set x . These activation map distributions were transformed to z

values by
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where i is the decomposition index, j the component index, and k the

voxel index (k = 1, 2, … K). i

kju
,

and i

kjz
,

are the activation weights

(or simply activations) and the z value of the kth voxel contributed

by the jth component in the ith decomposition. Assessments of how

well components were matched across decompositions were

performed on the z-transformed component maps with threshold 2.0

(except for the ROC curve measurements (see below) whereby the

z-value threshold was subject to change).

E. Component Matching

Our first question was whether or not each component could be

reliably found in the repeated decompositions. To this end, we had

to find the best-matching component pairs for each pair of

decompositions. Here, we used as a cost function the sum of

positive cross correlation coefficients between components, which

we found to yield the most satisfactory matching component pairs

[6]. To match components, we used the first decomposition from

each data set as a reference decomposition and then referred the

other 100 decompositions to this reference, forming 100

decomposition pairs. For each pair of decompositions by Hungarian

method, best matching component pairs were assigned by selecting

without substitution the most similar pair of unselected components.

Cross correlation coefficients between best matching component

pairs proved to be quite high. Thus, the 100 (decompositions) x 100

(components) were essentially separated into 100 component

equivalence classes, each consisting of 100 equivalent components

from each of the 100 decompositions. After the first component

matching, the components of the reference decomposition were

resorted according to the cross correlation coefficients. Then, the

components of all other decompositions were also resorted

according to the order of components in the reference

decompositions after best matching assigned.

F. Evaluating the Stability of ICA Decomposition

To assess the stability of ICA decomposition, we used four

different measures: (1) the cross correlation coefficient between

component pair maps, (2) uncertainty in the component maps, (3)

uncertainty in the component time courses, and (4) the area under

the ROC curve.

To evaluate the strength of component pair cross correlations,

we simply plotted the mean correlation coefficients across

decomposition for each component pair with error bars representing

their standard deviations.

Component uncertainty was calculated as the vector angle

between the maps or time courses of equivalent component pairs:

Ui
= cos 1

A i
•A 0

A i A 0
                        (3)

Above, Ui is the uncertainty measure of the ith component, A is a

vector representing the component spatial map or time course (0

indicates the reference decomposition), and A •B is the dot-product

between vectors A and B. Since the component pairs were derived

by the component matching process, the uncertainty measures were

applied to the matched component pairs only. The statistical

distribution of the uncertainty measures was estimated by the

multiple decompositions. The mean and standard deviation of the

uncertainty measures was plotted. The more reproducible a

component, the lower the uncertainty measure. However, the

uncertainty measures based on component spatial maps and

component time courses may be different..

To compute ROC curves, we used the component maps of the

first decomposition as the reference then varied the z-value

threshold to construct component maps corresponding to the other
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100 decompositions. If a voxel defined as active in one

decomposition was also selected as active in the reference

decomposition, we marked this voxel as a true positive. On the

contrary, if a voxel was defined as active in the same decomposition

but was marked as non-active in the reference decomposition, this

voxel would be marked as false positive. The numbers of true

positive voxels and false positive voxels were then divided by the

total number of active voxels and non-active voxels in the reference

decomposition to form true-positive and false-positive rates.

Consequently, the ROC curve was plotted as the scatter plot of these

two rates as a function of the z-value threshold. The area under this

ROC curve was then calculated for each component. For highly

reproducible components, this area should approach 1.

III.  RESULTS

Fig. 1 shows the average correlation coefficients of matched

component pairings between the reference decomposition and all

other 100 decompositions. Error bars give the standard deviation of

the correlation coefficients across the 100 decompositions. Figs. 2

and 3 show the uncertainty measures based on the angles between

the vectors of component maps and time courses, respectively.

These measures may be considered more stringent measures of

component similarity than the correlation coefficients shown in Fig.

1. Fig. 4 shows the average area under the ROC curves of each

equivalence component or equivalence class across 100

decompositions (the error bar indicating their standard deviation).

Fig. 1 Average correlation coefficients between component

spatial maps of matched components across decompositions. Error

bars show the standard deviations of the correlation coefficients.

Fig. 2 Mean uncertainty in component maps for equivalent

components in

100 decompositions. Components are ranked by their

contribution to the data, from largest (1) to smallest (100).

Fig. 3 Mean uncertainty in component time course for

equivalent

components in 100 decompositions. Component ranking as in

Fig. 2.

Fig. 4 Mean area under ROC curves of each component across

100 decompositions. The bars indicate the areas, averaged across

decompositions, under the ROC curve of components. Error bars

displayed on top show represent the standard deviations.

IV.  DISCUSSION

Correctly determining best-matching component pairs is the key

to the evaluation of the stability of ICA decompositions using either

resampled [7] [8] or repeated decompositions [5] [6]. Here, we have

shown that component matching by maximizing the sum of positive

correlation coefficients over component pairs gives satisfactory

results. Within equivalence classes, the best-matched components

show extremely high correlations of their component maps (> 0.85

for all data sets). There were always more than 90 (of 100)

component classes having mean pairwise correlation coefficients >

0.95 (with very small standard deviations). Our results further

confirm the preliminary results of Duann et al. [6] that finding

matching components by maximizing the summed positive

correlations across component pairs from a decomposition provides

more accurate component matching than using mutual information.

Although correlation coefficients can provide accurate

component pair assignments, they are not sensitive enough to match

component maps that contain many small groups of active voxels.

Any spatially overlapping voxels will give high correlation

coefficients without necessarily contributing to overall component

reproducibility. This is the reason why the last few components,

even if they do not seem to have similar component maps, still have

high correlation coefficients, as shown in Fig. 1. Here we also used

two uncertainty measures, the vector angles between component
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maps and time courses. These uncertainty measures can be

considered to be more sensitive than the correlation coefficient for

detecting matching components. As shown in Figs. 2 and 3, these

uncertainty measures revealed more differences between matched

components within the same equivalence classes than did the

correlation measure (Fig. 1).

It is worth noting that the component map angles suggested a

lower uncertainty (range: from 0 to 0.45 rad) compared to the time

course angles (range: from 0 to 0.9 rad). That is, the component

maps were more consistent than the time courses. However, for the

largest 50 components, the multiple ICA decompositions gave

almost identical time courses (uncertainty < or ~0.1 rad in Figs. 2

and 3). These uncertainty measures can be used not only to measure

the consistency of different ICA decompositions but also to help

select components of interest.

The result of ROC curve analysis also reveals that ICA

decomposition can stably decompose fMRI data set into highly

reproducible independent components. For all components, the

average areas under the ROC curves were all close to 1. This means

the 100 decompositions almost perfectly reproduced the same

components with the same brain areas as highlighted in the

reference decomposition.

This result was dependent on the choice of the reference

decomposition and the z-value threshold. Preliminary testing using

different z-value thresholds to construct the reference component

ROA maps showed that z-value threshold of 2.0 gave the best ROC

curve area for all the decompositions of one data set (data not

shown). Thus, we employed z-value threshold of 2.0 for computing

the component maps in this study.

We have recently developed an ICA component browser

application, FMRLAB, that allows for computing and browsing

through properties of the independent components extracted from

any kind of functional neuroimaging data. It also allows

experimenters to select components of interest for further analysis

or of no interest for rejection. FMRLAB runs on several platforms

under the MATLAB (The MathWorks, Inc., MA) environment, and

is freely available for non-commercial use via our web site

http://www.sccn.ucsd.edu/fmrlab [15].

V.  CONCLUSION

Assessing the consistency or stability of ICA decomposition of

fMRI data is an important issue for interpreting its results. Here, we

performed multiple decompositions of the same fMRI data sets into

spatially independent components to measure the stability of the

infomax ICA algorithm in the form used by our group and available

via our website [2]. For these data, infomax ICA never failed to

converge to a stable solution. Moreover, measures of component

maps and time courses showed that the repeated ICA

decompositions were extremely stable. However, these promising

results need to be further tested using fMRI data sets from

experimental paradigms involving e.g. more complex cognitive

processes.
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